An Energy-Preserving Wavelet Collocation Method for General Multi-Symplectic Formulations of Hamiltonian PDEs

نویسندگان

  • Yuezheng Gong
  • Yushun Wang
چکیده

In this paper, we develop a novel energy-preserving wavelet collocation method for solving general multi-symplectic formulations of Hamiltonian PDEs. Based on the autocorrelation functions of Daubechies compactly supported scaling functions, the wavelet collocation method is conducted for spatial discretization. The obtained semi-discrete system is shown to be a finite-dimensional Hamiltonian system, which has an energy conservation law. Then, the average vector field method is used for time integration, which leads to an energy-preserving method for multi-symplectic Hamiltonian PDEs. The proposed method is illustrated by the nonlinear Schrödinger equation and the Camassa-Holm equation. Since differentiation matrix obtained by the wavelet collocation method is a cyclic matrix, we can apply Fast Fourier transform to solve equations in numerical calculation. Numerical experiments show the high accuracy, effectiveness and conservation properties of the proposed method. AMS subject classifications: 65M06, 65M70, 65T50, 65Z05

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-Symplectic Runge-Kutta Collocation Methods for Hamiltonian Wave Equations

A number of conservative PDEs, like various wave equations, allow for a multi-symplectic formulation which can be viewed as a generalization of the symplectic structure of Hamiltonian ODEs. We show that Gauss-Legendre collocation in space and time leads to multi-symplectic integrators, i.e., to numerical methods that preserve a symplectic conservation law similar to the conservation of symplect...

متن کامل

Preserving energy resp. dissipation in numerical PDEs using the "Average Vector Field" method

We give a systematic method for discretising Hamiltonian partial differential equations (PDEs) with constant symplectic structure, while preserving their energy exactly. The same method, applied to PDEs with constant dissipative structure, also preserves the correct monotonic decrease of energy. The method is illustrated by many examples. In the Hamiltonian case these include: the sine-Gordon, ...

متن کامل

Energy-conserving numerical methods for multi-symplectic Hamiltonian PDEs

In this paper, the discrete gradient methods are investigated for ODEs with first integral, and the recursive formula is presented for deriving the high-order numerical methods. We generalize the idea of discrete gradient methods to PDEs and construct the high-order energypreserving numerical methods for multi-symplectic Hamiltonian PDEs. By integrating nonlinear Schrödinger equation, some nume...

متن کامل

2 5 Fe b 20 03 Multi - symplectic Birkhoffian Structure for PDEs with Dissipation Terms ∗

The multi-symplectic form for Hamiltonian PDEs leads to a general framework for geometric numerical schemes that preserve a discrete version of the conservation of symplecticity. The cases for systems or PDEs with dissipation terms has never been extended. In this paper, we suggest a new extension for generalizing the multi-symplectic form for Hamiltonian systems to systems with dissipation whi...

متن کامل

Spectral-collocation variational integrators

Spectral methods are a popular choice for constructing numerical approximations for smooth problems, as they can achieve geometric rates of convergence and have a relatively small memory footprint. In this paper, we introduce a general framework to convert a spectral-collocation method into a shootingbased variational integrator for Hamiltonian systems. We also compare the proposed spectral-col...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016